

 Revision 4/10/2014

XGE 10Gb Ethernet Performance
VxWorks 6.x, Linux 2.6.x

CRITICAL I/O WHITE PAPER

Abstract

The XGE 10G series of 10 GbE NICs provides dual port 10 Gigabit

Ethernet (10GbE) connectivity for embedded systems with the high

performance characteristics that are essential for data intensive real‐

time systems, yet maintaining 100% interoperability and compatibility

with standard Ethernet infrastructures.

The drivers support three usage models: standard networking APIs, a

high performance UDP Stream API, and a low latency RDMA API.

This paper provides actual measured data transfer rates and CPU

loading for the XGE 10G running under VxWorks 6.x and Linux 2.6.x

for a variety of modes of operation, on a variety of platforms.

 Revision 4/10/2014

XGE 10Gb Ethernet Performance

VxWorks 6.x, Linux 2.6, 3.x

The XGE 10G series of 10 GbE NICs provides dual port 10 Gigabit Ethernet (10GbE)
connectivity to embedded systems with the high performance characteristics that are
essential for data intensive real-time systems, yet maintaining 100% interoperability and
compatibility with standard Ethernet infrastructures.

The XGE 10G provides a balanced architecture which offers hardware acceleration for
bulk data transfers with the flexibility of a programmable protocol processor to
significantly improve network performance. It reduces the CPU cycles and burden
required for 10 GbE networking, maximizing I/O bandwidth without sacrificing host
CPU efficiency.

This paper summarizes the data transfer rates and CPU loading of the XGE 10G running
under VxWorks 6.x and Linux 2.6.x for a variety of modes of operation, on a variety of
platforms. TCP and UDP performance of more than 850 MB/s under VxWorks and
1200 MB/s under Linux have been measured.

XGE 10G Driver Models

The Critical I/O XGE 10G VxWorks and Linux Drivers allow user access to the 10GbE
network interface through two different methods; using the standard VxWorks or Linux
sockets API, or using a special high performance UDP Streaming API. The standards
socket API accesses the NIC through the VxWorks/Linux network stack, similar to a
normal NIC driver, while the UDP Streaming and RDMA models completely bypass the
VxWorks/Linux sockets layer, instead using specialized APIs that directly accesses the
XGE 10G hardware.

Standard Sockets API Model

The standard socket API model connects the XGE 10G driver through the VxWorks or
Linux sockets interface. This allows new and existing user developed socket applications
and standard network applications like FTP, Telnet, NFS etc. to make use of the XGE
interface. Network performance and CPU loading is excellent, but rates are limited
somewhat due to the interaction of the XGE 10G hardware with the VxWorks or Linux
O/S.

For VxWorks, two modes of operation are also available using the standard sockets
model. The Moderated mode provides very good network performance combined with
lowest CPU loading through the use of interrupt moderation and coalescing techniques.
The tradeoff is slightly lower peak performance, and slightly higher transfer latencies.
The Non-Moderated mode focuses on achieving the highest possible data rates and the
lowest possible transfer latencies, but at the expense of higher CPU loading.

 Revision 4/10/2014

Streaming UDP API Model

UDP Streaming provides a high performance data transfers models which leverage the
offload capabilities of the XGE 10G hardware. As the standard BSD Socket datagram
send/receive API is very limited, access to the UDP streaming functionality is provided
via a specialized UDP streaming send/receive API. This specialized API provides very
high performance UDP sends and receives with low host CPU loading.

For sends, the UDP streaming interface is used to send application supplied blocks of
data as a stream of UDP datagrams, with the datagram size being a user specified value.
Datagrams must be sized to fit within the current Ethernet frame size. The XGE offload
hardware will break the application supplied blocks of data into a sequence of UDP
datagrams, which relieves the host processor from the overhead of doing multiple
individual datagram sends. Thus the application may pass very large blocks of data to the
UDP streaming API to be sent, with no CPU involvement needed to perform that
datagram sends, other that the initial send setup.

For receives, the application provides a large data buffer to the UDP streaming API that
is to be filled with received datagrams for a defined IP/port. The offload hardware will
fill the buffer with received datagrams. The application may pass very large receive
buffers to the UDP streaming API to be filled, with negligible CPU involvement required
to fill the buffers with data after the initial receive setup. The data stream is delivered to
the application via a series of UDP datagrams that are written directly into application
data buffers after stripping off the datagram header information.

RDMA API Model

Remote Direct Memory Access (RDMA) is a capability that allows processor to
processor data movement directly between application buffers with minimal CPU
involvement. The RDMA API provides functionality to define local RDMA buffer
regions which remote RDMA nodes can read and write without local CPU involvement,
either directly or using RDMA based messaging.

Performance Measurements

VxWorks Performance Results -- Standard Sockets API

The following four charts show representative performance performing TCP sends and
receives, accessing the XGE 10G through the standard VxWorks socket API. The charts
show data rate in green (squares, upper lines), and CPU loading in blue (diamonds, lower
lines), for a variety of send or receive block sizes. This data was taken using an
embedded class processor base-board to host an XGE 10G XMC. The processor board
used a dual-core Intel i7 processor, running VxWorks 6.8 SMP. Standard 9K jumbo
frames were used.

 Revision 4/10/2014

TCP Send Performance (Intel i7, VxWorks 6.8, Jumbo Frames)
Moderated Mode

0

100

200

300

400

500

600

700

1K 2K 4K 8K 16K 32K 64K 128K 256K

Send Block Size

Send Rate
(MB/s)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

CPU Loading
(%)

TCP Receive Performance (Intel i7, VxWorks 6.8, Jumbo Frames)
Moderated Mode

0

100

200

300

400

500

600

700

1K 2K 4K 8K 16K 32K 64K 128K 256K

Receive Block Size

Receive Rate
(MB/s)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

CPU Loading (%)

The first two charts show results performing TCP sends and receives using the
Moderated (interrupt coalesced) mode, while the last two charts show results TCP sends
or receives using the Non-Moderated (maximum performance) mode.

 Revision 4/10/2014

TCP Receive Performance (Intel i7, VxWorks 6.8, Jumbo Frames)
Non-Moderated Mode

0

100

200

300

400

500

600

700

800

900

1000

1K 2K 4K 8K 16K 32K 64K 128K 256K

Receive Block Size

Receive Rate
(MB/s)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

CPU Loading
(%)

TCP Send Performance (Intel i7, VxWorks 6.8, Jumbo Frames)
Non-Moderated Mode

0

100

200

300

400

500

600

700

800

1K 2K 4K 8K 16K 32K 64K 128K 256K

Send Block Size

Send Rate
(MB/s)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

CPU Loading
(%)

 Revision 4/10/2014

UDP Streaming Receives (PPC, VxWorks 6.5, Jumbo Frames)

0

100

200

300

400

500

600

700

800

900

1000

64K 128K 256K 512K 1M 2M 4M

Receive Block Size

Receive Rate
(MB/s)

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

CPU Loading
(%)

UDP Streaming Sends (PPC, VxWorks 6.5, Jumbo Frames)

0

100

200

300

400

500

600

700

800

900

1000

64K 128K 256K 512K 1M 2M 4M

Send Block Size

Send Rate
(MB/s)

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

CPU Loading
(%)

VxWorks Performance Results -- Streaming UDP API

The following two charts show representative performance performing large block UDP
sends or receives, accessing the XGE 10G through the Streaming UDP API. The charts
show data rate in green (squares, upper lines), and CPU loading in blue (diamonds, lower
lines), for a variety of send or receive block sizes. This data was taken using an
embedded class processor base-board to host an XGE 10G XMC. The processor board
used a PowerPC processor, running VxWorks 6.5. Standard 9K jumbo frames were used.

 Revision 4/10/2014

TCP Send Performance (Intel Core2 quad, Linux 2.6.18, Jumbo Frames)

0

200

400

600

800

1000

1200

1400

1K 2K 4K 8K 16K 32K 64K 128K 256K

Send Block Size

Send Rate (MB/s)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

CPU Loading (%)

TCP Receive Performance (Intel Core2 quad, Linux 2.6.18, Jumbo Frames)

0

200

400

600

800

1000

1200

1400

1K 2K 4K 8K 16K 32K 64K 128K 256K

Receive Block Size

Receive
 Rate (MB/s)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

CPU Loading
(%)

Linux Performance Results -- Standard Sockets API

The following two charts show representative performance performing TCP sends or
receives, accessing the XGE 10G through the standard Linux socket API. The charts
show data rate in green (squares, upper lines), and CPU loading in blue (diamonds, lower
lines), for a variety of send or receive block sizes. This data was taken using an
embedded class processor base-board to host an XGE 10G XMC. The processor board
used a quad-core Intel Core2 processor, running Linux 2.6.18. Standard 9K jumbo
frames were used.

 Revision 4/10/2014

UDP Streaming Sends (Intel Core2 quad, Linux 2.6.18, Jumbo Frames)

0

200

400

600

800

1000

1200

1400

64K 256K 1M 4M

Send Block Size

Send
 Rate (MB/s)

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

CPU Loading
(%)

UDP Streaming Receives (Intel Core2 quad, Linux 2.6.18, Jumbo Frames)

0

200

400

600

800

1000

1200

64K 256K 1M 4M

Receive Block Size

Receive
 Rate (MB/s)

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

CPU Loading
(%)

Linux Performance Results -- Streaming UDP API

The following three charts show representative performance performing large block UDP
sends or receives, accessing the XGE 10G through the Streaming UDP API. The charts
show data rate in green (squares, upper lines), and CPU loading in blue (diamonds, lower
lines), for a variety of send or receive block sizes. This data was taken using an
embedded class processor base-board to host an XGE 10G XMC. The processor board
used a quad-core Intel Core2 processor, running Linux 2.6.18. Standard 9K jumbo
frames were used.

 Revision 4/10/2014

Performance Results – Linux RDMA API

The two charts below show the bandwidth, latency and CPU utilization using the RDMA
over Converged Enhanced Ethernet (RoCEE) protocol. Testing was performed between a
host processor board with an Intel Core2 Quad (2.82GHz) processor (Client node) and
another host processor Intel Xeon (2.40GHz) processor (Server node). A Fulcrum/Intel
Monaco Data Center Bridged (DCB) switch was placed between the nodes and the link
operated at 10G. Both nodes were running Linux Centos 6.2 (2.6.32) operating system.

Figure 1 shows the Round-Trip Time (RTT) Latency and corresponding client node CPU
utilization. The RTT value is the time from sending a message of size n and receiving a
response message of the same size divided by 2 (to account for the roundtrip). It is
important to note that the driver provides 2 methods of receiving send and receive
completions. One of these methods is to continuously poll a routine to check for
completions – this method is very CPU intensive but can provide the lowest latency. The
other method, which is used in for this testing, is to call a blocking function that returns
when a completion is received from the hardware. This second method provides slightly
higher latency but significantly lower CPU loading. Latency is measure from send start
to receive complete, so for larger transfer sizes the latency is dominated by the actual
transfer time.

0

10

20

30

40

50

60

70

80

90

100

0

5

10

15

20

25

30

35

40

45

50

1 10 100 1000 10000 100000

C
P
U
 U
ti
li
za
ti
o
n
 %

La
te
n
cy
 (
u
s)

Transfer Size (Bytes)

RTT Latency (Intel Core2, Linux 2.6.32)

Figure 1: RDMA RTT Latency and CPU utilization

Figure 2 shows the RDMA write bandwidth and CPU utilization. Bandwidth hits the
10GE link maximum at transfer sizes of about 4KB. The CPU utilization starts out
around 33% for 2 Byte transfers and declines to about 2% for 64KB transfers.

 Revision 4/10/2014

0

10

20

30

40

50

60

70

80

90

100

0

200

400

600

800

1000

1200

1 10 100 1000 10000 100000

C
P
U
 U
ti
liz
at
io
n
 %

R
at
e
M
B
/s

Transfer Size (Bytes)

RDMA Write Performance (Intel Core2, Linux 2.6.32)

Figure 2: RDMA Write Bandwidth and CPU utilization.

