CRITICAL I/O APPLICATION NOTE

Critical I/O XGE 10/40Gb Ethernet
UDP Direct for Highly Efficient GPU Data Transfer

Abstract

The use of Graphics Processing Units (GPUs) as massively parallel
offload processors is growing rapidly. With this comes the challenge
of efficiently moving large amounts of data to and from the GPU
internal memory without unnecessarily consuming a host processor’s
memory or PCle bandwidth. Critical I/O’s UDP Direct stream transfer
protocol can provide a highly efficient method of moving block
Ethernet/UDP data over standard 10 or 40 GbE networks, using a
completely standard UDP protocol. UDP Direct allows very large
blocks of UDP payload data to be sent and/or received directly to/from
GPU internal memory without passing through host memory,

© 2017 Critical I/0, LLC All Rights Reserved Revised 4/4/2017

resulting in a dramatic improvement in data transfer efficiency.
CRITICAL Io

UDP Direct for Highly Efficient GPU Data Transfer

The processing power of GP GPUs can provides many advantages in modern embedded processing systems. A
single GPU can offer a multi-TFLOP processing capability. To achieve this same level of processing throughput
would require dozens of general purpose CPUs

With this immense processing capability comes the need to move large quantities of data efficiently to and
from GPU memory, often coming from a sensor system. Traditionally this is done in a two-step process,
where the data is first ‘staged’ in a general purpose host processor’s memory, then the GPU is commanded to
DMA the data from the processor memory. Especially in cases where this sensor data is received over
Ethernet, this staging processing places a significant burden on the host processor and its memory subsystem.
Fortunately, current generation GPUs support direct memory access (DMA) from external devices. This means
that a device external to the GPU, and in fact potentially external to the host processor system entirely, can
write (DMA) data directly into GPU memory. This is far more efficient than the typical multi-step staging
processing. nVidia calls this specific GPU technology GPU Direct RDMA, while AMD calls a very similar feature
DirectGMA.

As an example system, consider the simple application shown below. Sensor data must be moved from
FPGA(s) on a sensor subsystem into GPU memory. The required sensor data rate for this example system is 4
GByte/s.

Sensors ED GP ED Intel
+ FPGA GPUs CPUs

i

Figure 1 - A processing flow that leverages GPGPUs

Now consider the use of 10 or 40 GbE Ethernet as the transport from Sensor/FPGA to the processing system.
The 4 GByte/s data rate can easily be accommodated using four 10GbE links, or a single 40 GbE link. A typical
implementation using UDP as the transport would result in the data flow shown below. The UDP traffic is
received and placed into buffers in processor memory (which with a standard network stack results in an extra
data copy). Then data must then be DMA’d by the GPU from host memory to GPU memory which can be
surprisingly CPU intensive as in many cases the host memory must be “pinned” and “unpinned” for external
GPU DMA access.

Ethernet can be a good choice as a sensor interface, especially in cases there the sensor is either a smart
sensor, i.e. it includes a CPU, or in cases where the sensor includes a FPGA. For the smart sensor case, the
Ethernet interface implementation is obvious — it is simply a 10/40 Gb Ethernet NIC that is managed by the
host CPU. The CPU can run a traditional network stack - potentially augmented with the UDP Direct API for
enhanced performance and determinism as is described later in this paper.

In the FPGA case, a combination of readily available Ethernet MAC/PHY IP and relatively and a relatively
simple UDP Direct send state machine logic can be used to implement a straightforward and efficient
Ethernet/UDP send interface.

© 2017 Critical /0, LLC All Rights Reserved Revised 4/4/2017

UDP Engine Processor
Sensors f 10/40GbE Subsystem
+FPGA |

o =
Intel o 9
e
Sensor CPUs g GPGPUs é
Subsystem !
I - I > 4
PCle Switch

Figure 2 - Receiving sensor data using conventional UDP requires staging data in processor memory

As can be seen by looking at the CPU memory traffic pattern shown in figure 2, the 4 GByte/s data stream will
actually consume four times that rate in processor memory bandwidth, for a total of 16 GByte/s of memory
bandwidth consumed — clearly very significant. This is in addition to also consuming one to two processor
cores just in managing the UDP receives. Combined, this represents a significant amount of valuable memory
and processing resources. Obviously, it would be highly advantageous if the UDP sensor data could bypass
processor memory and instead be placed directly in GPU memory.

Critical /O has implemented an enhancement to the standard UDP protocol called UDP Direct. UDP Direct is
exactly like standard UDP, except that it supports the delivery of UDP payload data through a 10/40 GbE NIC to
any PCle accessible memory, including GPU memory, as illustrated in figure 3. This means that UDP payload
data can be delivered directly to where it is needed without needlessly consuming host processor memory,

compute, and potentially PCle bandwidth.

While the use of traditionally UDP may cause some concerns with respect to potential missing or out-of-order
receipt of datagrams, UDP Direct augments traditional UDP with additional mechanisms that will detect and
report these conditions. These mechanisms are described in more detail later in this paper.

GPU Board FPGA Board Sensor Board CPU Board

Headers
and
Control

———— 10/40 GbE
Network

Host CPU

Memory Memory Memory

Payload
PCle Data

UDP Payload Data

Figure 3- UDP Direct bypasses processor memory and places data directly into any PCle accessible memory

In figure 4, we consider the same system as we looked at earlier in figure 2, but now leveraging UDP Direct.

The Ethernet/UDP sensor data flow now completely bypasses host memory and data is moved directly from
the 10/40 Gb Ethernet NIC directly to GPU memory. Not only does this remove the very significant loading

from host memory, it also results in a substantial reduction in latency.

© 2017 Critical /0, LLC All Rights Reserved Revised 4/4/2017

UDP Engine
Processor

Sensors | 10/40GbE Subsvstem
+ FPGA f | '
- -
Intel o o
Sensor CPU(s) g GPGPU(s) qE)
Subsystem 2 y =
[[
PCle Switch

Figure 4 - Receiving sensor data using UDP Direct, completely bypassing host memory

In figure 4, the sensor data does not pass through CPU memory (and thus does not consume CPU memory
bandwidth) but the data stream does still consume CPU PCle bandwidth. However, most general purpose
processor boards include on-board PCle switches, and in such cases it may be possible for the UDP payload

data to bypass the processor completely, as is shown in figure 5.

UDP Engine Y Processor
—1) 10/40GbE Subsystem
Sensors
+ FPGA - -
))
Intel 2 GP 2
CPU(s) 7] GPU(s)]
Sensor = ‘ =
Subsystem \ | | ,
PCle Switch

Figure 5 - PCle switching can eliminate all data movement through CPU

A Sensor FPGA Implementation of UDP Direct

Sensors subsystems often include FPGA that perform some initial signal processing algorithms. These FPGAs
can be an ideal candidate to host a UDP Direct Ethernet interface. As UDP Direct builds on a completely

standard UDP implementation, and UDP itself is an extremely simple protocol, a UDP Direct FPGA
implementation is also quite simple. An example implementation is shown in figure 6. Standard 10/40 GbE

MAC and PHY FPGA Intellectual Property (IP) is readily available, often directly from the FPGA supplier. This
“canned” IP is augmented with a relatively simple UDP Direct state machine along with a DMA engine.

While this particular implementation assumes that that the data that is to be sent is staged in external DDR
memory, the data could just as easily be hosted in a FIFO or other on-chip memory. The state machine
coordinates reading the data from memory, dividing the stream of data into fixed sized blocks each

© 2017 Critical /0, LLC All Rights Reserved Revised 4/4/2017

representing a UDP datagram payload. The state machine then prepends Ethernet, IP, and UDP headers to

each data block, forming a sequence of complete Ethernet/UDP packets that are forwarded to the 10/40 GbE
IP for transport.

Sensors

\ 4 A\ 4 A\ 4 \ 4 \ 4

<= Sensor Interface

§

P Signal Processing
Functionality

DDR3/4
Memory

\ 4

Memory Interface

uDP 10/40 -~
Send GbE -
State MAC/ |4
Machine PHY IP

v

UDP Data
Streams

A 4

UDP Direct FPGA Implementation

Figure 6 — An example UDP Direct Sensor FPGA Implementation
UDP Direct GPU Measured Results

The table below shows some measured data for several test cases involving moving Ethernet/UDP data to and
from a GPGPU. The host processor used for this testing as an Intel Xeon-D, the Ethernet NIC was a prototype
Critical 1/0 40 GbE unit, and the GPU was an nVidia Pascal architecture device. All PCle connections were PCle
Gen3 x8, with each PCle link thus able to support up to a ~6.5 GB/s data rate.

Data is included for both sending and receiving, using two different approaches. The first approach uses
conventional UDP sends or receives, with data staged in host processor memory, as was shown in figure 2
earlier. The second approach leverages UDP Direct to bypass host memory, as was illustrated in figure 4
earlier. The table shows the measured data rates as well as the associated host CPU loading (expressed as the
percentage of a single CPU core that is consumed). The host CPU memory loading is shown as well, along with
a “Relative Efficiency” metric which is defined as [Data Rate] / [CPU Loading]. This efficiency metric can be
used to compare the relative efficiency of the two data transfer approaches.

As can be seen from this data, leveraging standard UDP completely consumes one processor core as well
placing a very large load on CPU memory. The UDP Direct implementation places virtually no load on the
processor, and no load at all on CPU memory. The result is that UDP Direct can be as much as 20 to 30 times
more efficient than standard UDP as measured by normalized processor loading and data rate.

Though data is shown for UDP only, the use of standard TCP (instead of UDP) yields virtually the same result.

© 2017 Critical /0, LLC All Rights Reserved Revised 4/4/2017

Table 1: Measured results comparing standard UDP and UDP Direct for GPU data transfer

Measured | Single Core Relative C:;Jnl:jn:’:::;y
Transport Mode Rate CPU Loading Efficiency Consumed
(MB/s) (percent) (MBpS/Load%) (MB/s)
Standard UDP Receive, then GPU DMA 1982 93 21 7928
GPU DMA, then Standard UDP Send 4430 80 55 17720
UDP Direct Receive to GPU Memory 4931 8 616 0
UDP Direct Send from GPU Memory 4187 4 1047 0

1200

Relative Efficiency (MBpS/Load%)
(higher is better)

1000

1047

800

600

400

200

21

55

then GPU DMA

Standard UDP Receive

GPU DMA then
Standard UDP Send

UDP Direct Receive to UDP Direct Send from
GPU Memory

GPU Memory

Figure 7 — Relative efficiency of standard UDP vs. UDP Direct for GPU data transfer

Additional Details of UDP

Direct

Critical 1/O’s UDP Direct transfer protocol and XGE NIC hardware provide a highly efficient method of moving

block UDP data over standard 10GbE networks, using completely standard UDP as the on-the-wire protocol.
With a typical i7 CPU hosting the CIO UDP Direct driver, full 10GbE line rate sends and receives can be achieved
using less a 5% loading of one CPU core.

The UDP Direct stream mode of operation can be used concurrently with general purpose Ethernet network

traffic using the normal network stack. The XGE NIC hardware, firmware, and driver software support

simultaneous usage for UDP direct stream transfers and standard networking.

Key to the implementation of UDP Direct is complete bypassing of the normal operating system network stack

as is shown in figure 8. Instead, a UDP Direct APl is used to initiate sends or receives of data, and the

© 2017 Critical /0, LLC All Rights Reserved

Revised 4/4/2017

lightweight UDP direct driver implementation communicates directly with the 10/40 GbE XGE NIC, fully
leveraging the large block send/receive offload capability of the Critical I/0 XGE NIC hardware and firmware.

Off-Board
Data Buffers (on-board) Data
1| Buffers
User Applications (GPUs)
Sockets API Data
Buffers
0/s UDP (FPGAs)
Network] | E—
Direct
Stack <
\ Direct NIC access to data
|I | buffers — no network
stack, no data copies
PCle Interconnect
10/40 GbE NIC Hardware = Control Path
emmmm» Payload Path

Figure 8— UDP Direct operates in parallel with normal O/S network stack

As implied by the name, at UDP Direct mode applies to UDP traffic streams only. A “UDP stream” is defined as
a flow of data (a series of UDP datagrams) transferred between two UDP “endpoints”, where each endpoint is
defined by IP address and UDP port. For example, a connection between [192.168.5.1: 1005] and
[192.168.5:1025] would be a stream. (IP addresses and UDP ports can also be wildcards).

The Critical I/O XGE NIC hardware and associated firmware, along with the Critical I/O UDP Direct driver, have
the ability to “steer” incoming UDP traffic to a specific set of receive buffers associated only with that specific
stream, and also have the ability to strip off the various Ethernet/IP/UDP packet headers prior to writing the
payload data into those buffers. The set of receive buffers can be located anywhere in PCle address space,
such as memory within an external GPU or FPGA card. This is very significant because data will be deposited by
the XGE NIC hardware right where it is needed, with no host CPU data copies and no network stack overhead.

As an example, a user could define a 1 MB buffer located within an external GPU memory. A single call to the
ClO driver is made to associate this “big” buffer with a specific stream. The driver and NIC firmware will divide
the 1MB buffer into individual datagram buffers that are right size to receive the payload portion of the
incoming datagram stream. Only when the 1MB buffer is completely filled with incoming datagrams (or it
times out) will the XGE NIC generate an interrupt which will then result in the driver providing a user RX
completion notification. Only a single API call is needed to set up to receive the 1MB of data directly into GPU
memory, and then provide the completion to the user application when all of the data has been

received. Furthermore, the packet headers have been stripped off which results in the payload data being
packed contiguously into memory.

The stream receive capability is quite flexible with respect to the number and size of buffers that can be
queued, and the receive driver API calls can be blocking or asynchronous.

© 2017 Critical /0, LLC All Rights Reserved Revised 4/4/2017

UDP Direct also provides a “stream send” capability that functions nearly identically to the receive capability.
For stream sends, the user defines a buffer anywhere in PCle address space of arbitrary size. A single call to
the CIO driver will result in the driver and NIC firmware initiating a send of the full buffer, with the NIC
automatically breaking the buffer up into as many identically sized UDP datagrams as are needed to send the
full user buffer. A single completion notification is generated when the full buffer has been sent.

Note that while the other side of the interface can also be using the stream mode, it does not have to. It can
also just send (or receive) data via standard socket calls, provided the datagrams are the correct size.

There are several restrictions that must be observed. For receive data to be packed contiguously in the user’s
“big” receive buffer, the sender must send datagrams of consistent size, and the datagram size must match the
size that is defined on the receive side. Fragmented datagrams are not supported for either sends or receives.
In the typical case where the user defines the operation for both the send side and receive sides of the
interface these restrictions do not present a limitation.

UDP Direct API

The UDP Direct API provides the user application interface to send and receive streams of UDP datagrams. The
functions available within this APl are:

xel _init - Initialize the user level library
xel _end - Terminate the user level library
xel _udp_smsend_setup - Set up a UDP stream for sends
xel_udp_smsend_multi - Perform a UDP stream send
xel_udp_smsend_close - Close a UDP send stream

xel _udp_smrecv_setup - Set up a UDP stream for receives
xel _udp_smrecv_multi - Perform a UDP stream receive

xel _udp_smrecv_close - Close a UDP receive stream

Error Detection and Reporting

Timeouts - A timeout value can optionally be supplied when a multi-datagram receive operation is initiated. If
the timeout value is reached the receive operation will be terminated and a completion generated indicating
the amount of data, if any, that has been received.

Size Errors - Datagram sizes for each received datagram within a block can optionally be verified.

Missing and Out of Order Data Errors - Datagram receive order can optionally be verified in many use cases.
The detection method relies on the IP Identification field to verify datagram receive order. As a result it is only
applicable to cases where the UDP data sender(s) supplies datagrams with a uniformly incrementing IP
Identification field. XGE UDP Direct stream sends will always have a uniformly incrementing ID field for reach
stream. If sending from a system using a generic NIC and/or network stack, this generally means that the
sender must not send any IP datagram traffic other than the UDP stream traffic. If sending from a hardware
device such as an FPGA, the FPGA hardware and software simply need to be designed to send datagrams with
the proper IP ID sequences.

Error Reporting — In the case of size errors, or missing or out-of-order data, detailed information can optionally
be supplied with each receive completion that indicates the location and size of any missing or out of order
data.

© 2017 Critical /0, LLC All Rights Reserved Revised 4/4/2017

